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Abstract— A dual-module machine learning scheme is
proposed to reconstruct inhomogeneous scatterers with high
contrasts and large electrical dimensions. The first nonlinear
mapping module (NMM) is an extreme learning machine (ELM),
which is used to convert the measured scattered fields at the
receiver arrays into the preliminary images of the scatterers.
The second image-enhancing module (IEM) is a convolutional
neural network (CNN), which is used to refine further the
images from the NMM to obtain high-accuracy pixel-based model
parameter distribution in the inversion domain. Compared with
the traditional approximate methods such as backpropagation,
the NMM-IEM machine learning can produce the preliminary
image with a much higher accuracy but the unknown weight
matrices of the ELM are only solved once during training. Hence,
the IEM connected to the NMM has a simple architecture and can
be trained at a rather low cost. The performance of the proposed
dual-module NMM-IEM scheme and the conventional variational
Born iterative method is compared in terms of inversion of
scatterers with different electrical sizes and contrasts. Meanwhile,
the NMM-IEM is also assessed for the inversion of scatterers with
high contrasts and large electrical dimensions and experimental
data. Finally, the NMM-IEM is compared with the CNNs used
in the previous works.

Index Terms— Convolutional neural network (CNN), electro-
magnetic (EM) inversion, extreme learning machine (ELM), high
contrast.

I. INTRODUCTION

LECTROMAGNETIC (EM) inversion aims to recon-
struct model parameters such as permittivity, conductiv-
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ity, and permeability of unknown objects located inside an
inaccessible region by analyzing the scattered fields given the
illumination of the domain of interest (DOI) [1]. It has been
widely applied in geophysical exploration [2], nondestructive
evaluation [3], through-wall imaging [4], medical imaging [5],
[6], remote sensing [7], and so on.

Because of the intrinsic nonlinear relationship between the
unknown model parameters and measured scattered fields
and the ill-posedness of the discretized matrix equations,
the inverse scattering methods involve nonlinear optimization
and regularization [8]. Therefore, iterative methods are usually
adopted to solve the inverse scattering problems. For the
commonly used iterative methods such as the Born iterative
method (BIM) [9] and its variants, the contrast source inver-
sion (CSI) method [4], [10]-[12], and the subspace optimiza-
tion method (SOM) [13]-[15], the model parameters of the
unknown scatterers could be reconstructed by minimizing the
objective function that quantifies the mismatch between the
calculated and measured scattered fields iteratively. However,
the major drawback of these iterative methods is that they
are time-consuming and, thus, not suitable for the real-time
reconstruction.

In weak scattering scenarios, an inverse scattering problem
can also be solved approximately by noniterative methods.
For example, the inverse problems can be formulated by the
linear equations, which can be solved without iteration by
the Born approximation (BA) (including the backpropagation
(BP) method [16]) and the extended BA methods [17], [18].
The noniterative methods provide reconstruction results in a
quite short-time period, but they are not accurate, especially
for strong scattering applications.

In recent years, machine learning has attracted increased
attention in the areas of image processing and computer vision,
such as image classification [19], [20] and segmentation [21],
[22], depth estimation [23], and so on. Methodologies based on
the artificial neural network have also been proposed and used
to extract rather general information about the geometric and
EM properties of the scatterers [24], [25]. Nevertheless, these
methods used a few parameters to represent the scatterers,
such as their positions, sizes, shapes, and piecewise constant
permittivities. The scope of this kind of parameterization
is limited, since the scatterers in the DOI can be spatially
inhomogeneous and their numbers can be arbitrary. A more
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versatile approach to represent the scatterers is using the
pixel basis, i.e., the values of the dielectric parameters in
all the pixels are independent of each other. For the pixel-
based EM inversion, a novel deep neural network architecture,
termed DeepNIS, was proposed in [26]. DeepNIS consists
of a cascade of three convolutional neural network (CNN)
modules, in which the inputs are the complex-valued images
generated by the BP algorithm and the outputs are the super-
resolution images of the dielectric parameter distribution of
the unknown objects. The DeepNIS outperforms conventional
nonlinear inverse scattering methods remarkably in terms of
both the reconstruction accuracy and computational time.
In [27], three inversion schemes based on the U-Net CNN
were proposed for inverse scattering problems. They are the
direct inversion scheme, the BP scheme, and the dominant
current scheme. In terms of the results of several representative
tests, the proposed dominant current scheme outperforms the
other two schemes. Both the DeepNIS in [26] and the BP and
dominant current schemes in [27] require the pixel-based input
images of the scatterer model parameters, which are obtained
through the linearized approximation of the inverse scattering
problems. When the contrasts of the scatterers are high or their
electrical sizes are large, linearized approximation methods
may fail. In addition, the direct inversion scheme in [27] can
reconstruct the model parameter distribution from the scattered
field data directly, although the U-Net spends high cost to
train and learn the underlying wave physics. Recently, some
improved supervised machine learning techniques have been
developed for full-wave EM inversion. For example, in [28],
several strategies to incorporate the physical expertise inspired
by the traditional iterative algorithms such as CSI and SOM
were adopted and the inversion accuracy and efficiency were
validated. Yao et al. [29] developed a two-step deep learning
approach that can reconstruct the high-contrast objects using
the cascade of a CNN and another complex-valued deep
residual CNN. In [30], the supervised descent learning module
is embedded inside the iterative process. The reconstruction
of 2-D images was achieved through iterations based on the
descent directions learned in the training stage.

In this article, a tailored machine learning scheme composed
of two cascaded modules is proposed to reconstruct pixel-
based inhomogeneous scatterers with high contrasts and/or
large dimensions. The first one is the nonlinear mapping
module (NMM) that converts the scattered fields measured at
the receiver arrays into the preliminary images of the model
parameters in the inversion domain by using a complex-valued
extreme learning machine (ELM). The second one is the
image-enhancing module (IEM) that further refines the results
from the NMM to obtain high-accuracy pixel-based model
parameter distribution by using a CNN. Without relying on
the conventional nonlinear inversion methods such as BIM,
distorted BIM (DBIM), variational BIM (VBIM), CSI, and
SOM, the proposed dual-module NMM-IEM machine learning
technique could successfully reconstruct the pixel-based model
parameters from the measured scattered field data with high
accuracy, especially for the scatterers with high contrasts
and/or large electrical dimensions. This dual-module scheme is
different from the cascaded network proposed in [29], since the
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Fig. 1.  Typical measurement configuration for a 2-D inverse scattering
problem. Transmitters and receivers surrounding the scatterers are placed on
the circles with the radii of R, and R,, respectively.

ELM is employed in this article. The ELM is a feedforward
neural network and is suitable for nondifferential activation
functions. To a large extent, it has the advantage of preventing
some troubling issues of a neural network such as stopping
criteria, learning rate, training epochs, and local minima [31].
The proposed scheme is also different from DeepNIS in [26]
and the BP and dominant current schemes in [27], since the
preliminary images of the model parameters in these three
schemes are obtained by linear approximations, e.g., BP. As a
result, strong scattering will cause large errors. By contrast,
the NMM in the dual-module scheme can account for the
strong nonlinear relationship between the model parameters
and the scattered field data. In addition, because the NMM can
retrieve the preliminary images with higher accuracy compared
with linear approximations, the training of the following CNN
in the IEM has a low cost due to its simple architecture.
Our method is also different from the direct inversion scheme
in [27]. The scattered field data are directly converted into
the final model parameters in the direct inversion scheme.
The physics of EM scattering is included in the training
and learning of the CNN in the direct inversion scheme.
In our dual-module scheme, the scattered field data are mapped
to the preliminary images of the model parameters through
the nonlinear transform of the ELM. Compared with the
conventional CNN, e.g., U-Net that uses the gradient-based
learning algorithms to tune iteratively the network parameters,
the ELM randomly chooses the hidden nodes and analytically
determines the output weights for the hidden layers of the
feedforward neural networks, which has the much lower
training cost than the traditional feedforward neural networks.
However, previous numerical experiments showed that the
ELM has a good generalization performance in most cases
[31]. In addition, numerical cases in this article show that the
ELM of the NMM can well reflect the strong nonlinear effects
of EM scattering by scatterers with high contrasts and/or large
electrical dimensions although it has a simple architecture and
its unknown model weights are only solved once. Compared
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with previous research work, this article has the following
novelties: 1) scatterers with high contrasts and large electrical
dimensions can be reconstructed by the machine learning
scheme very quickly and 2) the training of the ELM and the
CNN has the low costs.

This article is organized as follows. In Section II, the for-
mulation of the inverse scattering problems based on inte-
gral equations is introduced. In Section III, the NMM and
IEM are discussed in detail. In Section IV, numerical results
are presented. The inversion performance of the proposed
dual-module NMM-IEM scheme and VBIM is compared.
In Section V, the measured data in laboratory experiments are
reconstructed by the NMM-IEM. Finally, the conclusions are
drawn in Section VL.

II. CONVENTIONAL SOLUTIONS OF THE EM INVERSE
SCATTERING PROBLEMS

In this section, we briefly describe the conventional forward
and inverse scattering formulas. As shown in Fig. 1, several
2-D scatterers are placed in the free space. Transmitters and
receivers surrounding the scatterers are z-polarized. When the
integral equation method is adopted, the forward scattering
model is formulated by the state equation
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£ () = B+ 50 [ OB ) H Gl
D
m

Architecture of the dual-module NMM-IEM machine learning scheme. It includes two parts: the NMM and the IEM.

where E"¢ is the incident electric field when the scatterers in
the DOI are absent, while EZ is the total electric field when
the scatterers are present. ko is the wavenumber in free space
and Héz) is the zeroth-order Hankel function of the second
kind. The contrast y. is expressed as

)

Equation (1) can be discretized using the 2-D mixed-order
basis functions and solved by the stabilized biconjugate-
gradient fast Fourier transform (BCGS-FFT) method. The
details can be found in [32] and will not be repeated here.

The inverse scattering model is formulated by the data
equations

xe(p) =& (p) — L.

kg
EX 0=~ | %o EL o) H Gl — pDdp| ()
k
Hsct(p): 00)802

p—p

Are Xe(P)EW(P)H(Z)(kom p'Ndp'

(3b)

where Hl(z) is the first-order Hankel function of the second
kind. Solving the data equations (3) is to map the data vector of
the discretized E3“, H“, and Hy”’ measured at the receivers
to the pixel-based 2-D image of &,(p) distribution in the
inversion domain. Because E!” also depends on &, such
a mapping is nonlinear. In the conventional way, the total
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field and the contrast are updated alternately by solving the
state equation (1) and data equations (3) alternately. Although
several iterative solvers, such as VBIM [32], subspace-based
optimization method [13], and CSI [4], are proposed to
accommodate the nonlinear relationship between the scattered
field and the contrast, the computational cost is high. Some
linear solvers such as BA and extended BA run fast but only
work for scatterers with low contrasts or small electrical sizes.
Therefore, it is desirable to develop a fast solver to account
for the strong nonlinear relationship between the scattered field
and the contrast in the inversion domain.

In this article, we use the NMM containing an ELM to
realize the nonlinear mapping from the scattered field data to
the pixel-based permittivity distribution. Although the NMM
has a simple architecture and a low training cost, it can recover
the preliminary images of the scatterers with high contrasts
and/or large dimensions from the scattered field data quickly.
The performance of the proposed NMM and the BA solver is
compared in Section IV. One should note that we use BA for
the test instead of using BP, as BP can be viewed as a special
case of BA [33]. In addition, following the NMM is the [EM
that will further improve the inversion results.

II1. DUAL-MODULE NMM-IEM MACHINE LEARNING

There are two parts in the proposed dual-module
NMM-IEM machine learning model: the NMM and the IEM.
The NMM is employed to preliminarily convert the complex-
valued scattered field data into the real-valued relative per-
mittivity in the DOI. The IEM as a CNN is used to enhance
further the reconstructed image from the NMM. Fig. 2 shows
the architecture of the proposed method.

A. NMM

The scattered fields measured at the receiver arrays are
complex-valued data, while the relative permittivity of the DOI
is the real value. The NMM is to convert the complex-valued
scattered field data into the real permittivity with their non-
linear relationship manifested by the EML that has a simple
architecture with low training cost. The NMM has four layers:
the input layer, two hidden layers, and the preliminary imaging
layer. The input layer nodes are filled with the column vector
X; = [x1j,X2j, ... ,xMj]T € CM, which contains the complex-
valued E, noH}", and nOH}f” for all the transmitter and
receiver combinations, where 7 is the intrinsic impedance of
free space. The combination of E;, noH;“', and o H;' could
increase the diversity of the training data through the random
matrix in the ELM to obtain more reliable reconstruction
results. The subscript j denotes the jth training data set and
M is the dimension of the input data set for each training. The
NMM output column vector 0; = [01;, 025, ..., on]T e RV
has real values, and its dimension N is the total pixel number
in the DOL. It is evaluated by

o) = ag, (w,|Bg.(W.x; +b)| +p) @)

where j = 1,2,..., P if there are totally P sets of training
data. w. is an L x M complex-valued random weight matrix,
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and b is a column threshold vector including L complex-
valued random numbers [31]. g. is the nonlinear activation
function, and its outputs are the L complex values in the

neurons of the first hidden layer. B is a K x L complex-valued
weight matrix connecting the neurons of the first hidden layer
to the inputs of the second hidden layer and K is the neuron
connection numbers to the output layer. It is determined by

training. ®, g,, w,, and p play the similar parts as B8, g,
w,, and b, respectively, but work for the second hidden layer
and have real values. @ connects the neurons of the second
hidden layer and the nodes in the preliminary imaging layer.
The dimensions of @, %,, and pare N x S, § x K, and S,
respectively.

With many times of experiments in this article, an inverse
hyperbolic function expressed as

(5)

() = [ =
g = arcsinh(x) = e
¢ 0 1412
is selected as the complex activation function g., and the
sigmoid function expressed as

g, = sigmoid(x) = e (6)

is selected as the real activation function g,. It is assumed that
the true relative permittivity values in the DOI are denoted
ast; = [tij, 1), ..., ty;]7 € RY. To obtain the optimum S,
we minimize the mismatch between the inputs of the second
hidden layer and the true relative permittivity values, i.e., we
let Zle ||0’j — t; || = 0 and solve for the complex-valued

weight matrix 8. The real-valued weight @ can be obtained
following the similar procedure by minimizing the mismatch
between the node values of the preliminary imaging and t; for
all the training data sets, i.e., we let Zle loj —t; |l =0.
Meanwhile, to satisfy the dimension matches for different
vectors and matrices, we set K = N. Thus, the equation
relating the weight matrix B of the first hidden layer to the
true relative permittivity vector t; for all the training data sets
can be compactly expressed as

BG. =T %)

where T = [t;; t2; ... tplyxp and G, is the combination of
all the column vector output from the activation function g. of
the first hidden layer for all the training data sets X; and has
the dimensions of L x P. Thus, the optimum complex-valued

weight matrix B could be computed by
B=TG, (8)

where the complex matrix EZ is the Moore—Penrose gener-
alized inverse of the complex matrix G.. The computation
of the Moore—Penrose generalized inverse could be referred
from [34]. Following the similar procedure, we can obtain the
optimum real matrix:

——f
TG, ©)

RlP

where the real-valued matrix G, is the combination of all
the column vector output from the activation function g, of
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the second hidden layer and has the dimensions of § x P.
We can see that the ELM in the NMM can be trained at a low
cost, since both unknown weight matrices of two hidden layers
can be obtained by solving the matrix inverse only once.

B. IEM

The IEM is used to improve further the 2-D image out-
put from the NMM. It is actually a CNN and consists of
an encoder, a decoder, and a pixel classifier. The encoder
is employed to analyze and contract the input data, and
then, the decoder synthesizes and expands the previously
encoded feature. Finally, the decoded output is the input to the
pixel classifier for a full-resolution segmentation. As shown
in Fig. 2, there are two layers in the encoder, two layers
in the decoder, and one layer in the pixel classifier. In each
layer of the encoder, a convolution kernel with the size of
3 x 3 and a rectified linear unit (ReLu) are followed by a
2 x 2 max pooling. In the decoder, each layer consists of
a transposed convolution kernel with the size of 4 x 4 and
an ReLu. Following the decoder, the convolution with the
1 x 1 kernel size produces the output with one channel. Then,
a pixel classifier is employed to classify each pixel of the
image for a full-resolution segmentation. Since the CNN is
quite mature and discussed a lot in previous literature and
has been successfully applied to image segmentation for the
full-wave inversion [26], [27], [35], we will not discuss it
further here. In addition, because the NMM can recover the
preliminary images of the scatterers with higher accuracy than
BA or BP, the training cost of the CNN in the IEM is lowered
accordingly. In addition, this will be verified in Section VI.

IV. NUMERICAL RESULTS

In this section, two numerical examples are presented. The
first one is used to validate the feasibility of the dual-module
NMM-IEM machine learning scheme, and its implementa-
tion efficiency and accuracy are also compared with those
of the conventional VBIM method. In the second example,
the reconstruction of the scatterers with high contrasts and/or
large dimensions is performed and the antinoise ability of the
NMM-IEM is also evaluated. In both examples, the training
model is the same. It is the variant of the “Austria” profile
[4]. All simulations are performed on a personal computer
with an Intel i7-9700 3.00 GHz CPU and 64 GB RAM.
When the contrasts of the scatterers are too high, it is not
feasible to use the BCGS-FFT presented in [32] to solve the
integral equations to obtain the scattered fields. Therefore,
the commercial software COMSOL using the finite-element
method synthesizes the scattered field data that will be used
for training and testing in the following.

A. EM Inversion Setups

In both numerical examples, the operating frequency is
300 MHz, corresponding to a wavelength of 1o = 1 m in
free space. Following the Nyquist sampling theorem that the
spatial distance between two receivers should roughly be half
wavelength, 40 transmitters and 60 receivers are uniformly
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Fig. 4. Variations of model misfits in the training and validation of IEM.
The training terminates when the misfit approaches 1%.

placed on two concentric circles with the radii of 4 and 4.5 m,
respectively. The DOI shown in Fig. 3 has the size of 5 m x
5 m and is discretized into 96 x 96 pixels with its center
at the origin. To evaluate quantitatively the reconstruction
performance, we define the model misfit and data misfit under
the L, norm as

dr — md
Ertmodel = |mde — mdy{ (10)
[md7||
dap — d
Errg, — [dag — dar|| an
[dar||

where md7 is the vector of the true model parameter values in
all the pixels and mdy is the reconstructed model parameter
vector; daz is the vector of the measured scattered field data
collected at all the receivers and day is the reconstructed
scattered field data vector.

B. Training Details of Two Modules

We use the variant of the “Austria” profile to train the NMM
and the IEM. As shown in Fig. 3, the radii and centers of both
disks, i.e., ry, 2, X1, y1, X2, and y,, and the inner and outer
radii and centers of the ring, i.e., r3, r4, X3, and ys, are set as
variables and assigned random values with their ranges listed
in Table I. Meanwhile, to enrich the training data sets, we add a
rectangle and a square to the DOI. The centers of the rectangle
and square, i.e., x4, Y4, Xs, and ys, and the side lengths of
these two shapes, i.e., [}, [, and /3, are also set as variables
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TABLE I
PARAMETER RANGES FOR THE SCATTERERS IN THE INVERSION MODEL SHOWN IN FIG. 3

Parameter
Range ri | @ |y1|r2 |@2|y2 | T3 | Ta |23 |y3 |l |l2 |@a|ya|ls |@5 |ys|E1|E2|E3|¢Ea|6ED
Minimum o1r,-21{-2101}-21{-2(01(02}-21]-2(01(01}-2|-21]01]-2]-=2]1 1 1 1 1
Maximum 1 2 |2 1 2|2 1 2 2|2 2 2 2 |2 2 2 (2818|888
Remark: the unit of length is meter. €; is the relative permittivity value of th scatterer.
Ground truth NMM
E E
Test #1 = =
g g
Test #2 = =
25 0 25
x (m)
25
E o g E
Test #3 BS = S
25
25 0 25
x(m)
25
E o g E
Test #4 = = z

4
n

n
o
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o
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x (m) x (m)

Fig. 5.
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Four inhomogeneous scatterers are used to test the proposed dual-module machine learning scheme. From the first row to the fourth row, both the

geometric shape complexity and contrasts increase. The first column is the ground truth, and from the second column to the fifth column, the inversion results

from BA, VBIM, NMM, and IEM are shown, respectively.
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Fig. 6. Variations of (a) data misfits and (b) model misfits in the VBIM

iterations.

and assigned random values. The relative permittivities of the
five scatterers are randomly set with different values in the
range of [1, 8]. Hundred randomly generated training samples
are employed to train the NMM. The Hecht—Nelson method
is used to calculate the node number of the two hidden layers
[36]. When there are n sets of training data, the node number
of the hidden layer is empirically chosen as 2n + 1. Therefore,

in the NMM, the dimensions of ? and @ are 9216 x 201.

Within 1 s, the values of E and @ could be obtained. The
100 sets of outputs from the NMM are used as the inputs to
train and validate the IEM. Among them, 75 sets are used
for training and 25 sets for validation. As shown in Fig. 4,
after 40 epochs, the model misfit approaches 1%, and then,
the training process terminates.

C. Comparisons With Conventional Inversion Methods

To validate the inversion accuracy and efficiency of the dual-
module NMM-IEM machine learning scheme, we compare
their inversion results with those from the conventional BA and
VBIM. As shown in Fig. 5, from Tests #1 to #4, the contrast
of the scatterer gradually increases. Meanwhile, the geometric
shape also becomes more and more complex. For the scatterers
in the inversion domain including the simple disk and the
rectangle with the low contrasts in Test #1, both BA and
VBIM can reconstruct the scatterers well. As the contrast
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scheme. From the first row to the third row, both the complexity of geometric shapes and contrast increase. The first column is the ground truth, and from
the second column to the fifth column, the inversion results of the NMM-IEM for noise-free, 20 dB noise, 15 dB noise, and 10 dB noise are shown, respectively.

150 mm

150 mm

Fig. 8. Inversion domain and the true profile of “FoamDielExt” in the
experimental data. The inversion domain has the size of 0.15 m x 0.15 m, and
the frequency is at 5 GHz. The large disk scatterer has the diameter of 80 mm,
and its relative permittivity is 1.45. The small disk scatterer has the diameter
of 31 mm with the relative permittivity of 3.

values increase, the inversion results by BA show larger and
larger errors. In Test #4, even the iterative VBIM cannot
reconstruct the three overlapped disks. However, the inversion
results by the NMM and IEM are almost not affected by
different contrast values and shape complexity, which is shown
by the fourth and fifth columns of Fig. 5. This is further
quantitatively verified by the model misfits listed in Table II.
As can been seen, from Tests #1 to #4, the model misfits
from BA and VBIM gradually increase. However, they almost
remain unchanged for the NMM and the IEM. The IEM
further improves the reconstructed images from the NMM
by approximately reducing the model misfits by 2%. In addi-
tion, one should note that the discrepancies of model misfits
between the VBIM and the IEM also gradually increase from

NMM
0.075

y (m)
S
y (m)

-0.075
-0.075 0
x (m)

0.075 il 3
25

0 2
1.5

-0.075 1

-0.075 0 0.075
x (m)

0.075

Fig. 9. Reconstructed relative permittivity profiles of “FoamDielExt” by the
NMM and IEM.

Tests #1 to #4. This indicates that the proposed dual-module
scheme has stronger adaptability. In other words, it is more
competent to deal with the scatterers with high contrasts and
complex geometric shapes compared with the conventional
VBIM. In addition, we also computed the scattered fields by
substituting the reconstructed relative permittivity values in all
the pixels into (3) and then evaluated the data misfits. They
are 0.0093%, 0.009%, 0.0169%, and 0.362% for Tests #1—#4,
respectively.

Fig. 6 shows the variations of data misfits and model misfits
for the inversion by VBIM. From Tests #1 to #4, it becomes
more and more difficult for the VBIM to converge to a low
data misfit. The final data misfit of Test #4 is the largest, while
that of Test #1 is the smallest. This is quite different from the
stable trend of data misfit values by the NMM-IEM mentioned
above. For the model misfits shown in Fig. 6(b), Test #1 also
has the smallest value. However, Test #3 has the larger final
model misfit than Test #4. This is because the electrical size of
the scatterer in Test #3 is larger than that of Test #4 although
the contrast value used in Test #3 is smaller. Because each
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TABLE 1I
MODEL MISFITS (%) OF FOUR TESTS SHOWN IN FIG. 5
Method BA VBIM | NMM | IEM
Test
#1 4.8230 2.0181 3.2615 1.0346
#2 8.2708 3.6495 3.3103 1.0951
#3 12.7513 5.5959 3.2916 1.0415
#4 13.0708 4.0328 3.2812 1.0864
TABLE III

CONTRASTS AND MODEL MISFITS (%) OF THREE TESTS SHOWN IN FIG. 7

Parameter

Test Largest x. | Noise-free | 20dB | 15dB | 10dB
#5 3 1.2516 [3.5433]7.2061 | 15.3315
#6 5 1.2814 [3.5549[7.2123 | 15.3595
#7 7 1.3108 [3.7316 | 7.2161 | 15.3634

VBIM iteration takes about 46 s in Test #4, the total time cost
of VBIM is much higher than that of the dual-module scheme
that spends less than 1 s to obtain the final high-accuracy
2-D image. In addition, we also input the reconstructed 2-D
images by the NMM in Test #4 into the VBIM solver as the
initial values. Then, the VBIM takes around 983 s to obtain
the final inversion results that have the model misfit as large
as 4.017%. This is around four times of the model misfit by
IEM. Obviously, it is inadvisable to replace the IEM module
in the proposed scheme with a conventional iterative solver.

D. Inversion of Scatterers With High Contrasts and Large
Electrical Dimensions

Then, three scatterers with high contrasts and large electrical
dimensions, as shown in Fig. 7, are used to test the proposed
dual-module NMM-IEM scheme. From Tests #5 to #7, both
the contrasts and dimensions gradually increase. Meanwhile,
we add 20, 15, and 10 dB Gaussian white noise to evaluate
further the antinoise ability of the proposed method. Here,
the noise level is defined by the signal-to-noise ratio (SNR)
of power. Test #5 is designed with a tangency semicircle
and a rectangle to evaluate the ability of NMM-IEM to
distinguish different tangency scatterers, where the largest
contrast is 3. The multiple scatterers in Test #6 are tangency,
nested and overlapped and have the largest contrast of 5.
In Test #7, we select four concentric circles and a square
overlapped together and the largest contrast is 7. As shown
in Fig. 7, as the noise increases, the reconstructed 2-D images
become more and more blurred, which are clearly illustrated
by the increasing model misfits listed in Table III. However,
the model misfits in three different tests almost keep the same
levels for both noise-free and noisy scenarios although both
the electrical sizes and the largest contrast y. increase from
Tests #5 to #7. The evaluated data misfits for the noise-
free cases also show the similar stable trend. They are 1.1%,
1.34%, and 1.26% for Tests #5—#7, respectively. Note that
the electrical dimensions of DOI here are 519 x 51p, and in
Test #7, the diameter of the largest circle is 44y. Numerical
simulations show that the conventional solver such as VBIM
does not converge for these three tests. It cannot tackle the
scatterers with high contrasts and large electrical dimensions,
but the proposed dual-module scheme can.
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Fig. 10. Variations of model misfits in the training processes of U-net, three
cascaded CNNs, and the proposed IEM.

V. TESTS WITH EXPERIMENTAL DATA

The experimental data measured at Institute Fresnel
[37] are used to evaluate further the proposed scheme.
A “FoamDielExt” profile, as shown in Fig. 8, with the TM
case selected, is adopted in the test. In the measurement
environment, both the transmitter and receiver arrays are
placed on a circle with the radius of 1.67 m surrounding the
“FoamDielExt” profile. Eight transmitters are used, and the
field data are recorded by 241 receivers. The experimental
data are calibrated by multiplying them with a single complex-
valued coefficient that is derived from the ratio of the measured
incident field and the simulated one at the receiver opposite
to the source [37]. Thus, according to the experimental setup,
the training data are chosen similar to those in Section IV,
with the difference that we downsize the DOI dimensions to
150 mm x 150 mm, increase the frequency to 5 GHz, and set
the range of relative permittivity between 1.0 and 3.5. Hundred
samples are produced by COMSOL and employed to train
the proposed dual-module scheme, and the measured scattered
field data for the “FoamDielExt” profile provided by Institute
Fresnel are set as the input of test. Within 1 s, the reconstructed
relative permittivity profiles from the NMM and the IEM are
obtained and the results are shown in Fig. 9. The model misfits
of the NMM and IEM are 3.39% and 1.10%, respectively.
Meanwhile, the data misfits for the reconstructed profiles
by the NMM and IEM are 9.37% and 3.42%, respectively.
The results from the experimental data further verify the
effectiveness of the proposed NMM-IEM model that has a
good performance when dealing with highly nonlinear inverse
scattering problems.

VI. COMPARISONS WITH OTHER CNNs

We compare the proposed dual-module scheme with the
U-Net used in [27] and three cascaded CNNs adopted in [26].
Because the preliminary images in [26] and [27] are acquired
by BP, we directly compare the IEM in this article with the
U-Net in [27] and three cascaded CNNs in [26]. Both the
training and testing data sets used for the comparisons are
generated by the NMM. The MNIST database [38], which
is a database of handwriting digits widely used in the field of
machine learning, is employed to represent the inhomogeneous
scatterers. The DOI has the dimensions of 2 m x 2 m.
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Four different digits with different relative permittivities are
randomly placed in the DOI. The relative permittivity values
are in the range of [6 9]. Hundred samples produced by the
NMM are employed to train the U-Net, three cascaded CNNss,
and the IEM proposed in this article. The variations of model
misfits in the training are shown in Fig. 10. We can see that the
training of the IEM converges much faster than those of U-Net
and cascaded CNNs although the final data misfits of these
three methods are almost the same. More detailed comparisons
of training time and model misfits in different epochs for
three methods are listed in Table IV. The low training cost
of the IEM is due to its much simpler architecture than those
of the U-Net in [27] and the three cascaded CNNs in [26].
As mentioned in Section III-A, because the NMM can obtain
the preliminary images of the scatterers with a higher accuracy
compared with BP, the IEM used in this article is constructed
simply, and thus, the training cost is reduced significantly.
We then test the U-Net, cascaded CNNs, and IEM using a
preliminary image including four handwriting digits generated
by the NMM. The ground truth and the preliminary images
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Ground truth, reconstructed 2-D images by NMM, U-net, three cascaded CNNs, and the proposed IEM in different epochs based on the training

are shown in the first row of Fig. 11. The reconstructed images
based on the training results in different epochs by three
different methods are shown from the first column to the fourth
column in the second row to the fourth row. The corresponding
model misfits are listed in Table V. The reconstructed image
by the IEM is good enough in the 40th epoch. By contrast,
the cascaded CNNs and U-net could obtain the same level
performance after 160 epochs. Clearly, the proposed IEM has
a lower training cost.

VII. CONCLUSION AND FUTURE WORK

In this article, a dual-module NMM-IEM machine learning
scheme is developed to deal with the reconstruction of inho-
mogeneous scatterers with high contrasts and large electrical
dimensions. Compared with the previous works regarding the
applications of CNNs to EM inversion, the ELM and a CNN
with low training costs are used in the proposed modules.
Because the weight matrices of the ELM are only solved once
using all the training samples, the ELM is trained within 1 s
for all the numerical cases presented in this article. Although
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TABLE IV

TRAINING RESULTS OF U-NET, THREE CASCADED CNNS, AND THE PRO-
POSED IEM WITH 100 SAMPLES GENERATED FROM NMM

Training time (second) Model misfit (%)
Epoch Cascaded Cascaded
U-Net CNNs IEM | U-Net CNNs IEM
40 114 164 10 8.65 8.15 2.19
80 226 329 18 5.11 6.50 1.66
120 337 494 28 1.31 2.74 1.47
160 453 659 39 1.21 1.51 1.49
TABLE V

INVERSION MODEL MISFITS (%) OF U-NET, CASCADED CNNS, AND THE
PROPOSED IEM IN DIFFERENT EPOCHS SHOWN IN FIG. 11

Epoch U-net Cascaded CNNs IEM
40 8.86 8.61 2.11
80 5.21 6.18 1.56
120 1.64 2.89 1.47
160 1.52 1.46 1.48

having the low training cost, the ELM can reconstruct the
preliminary images of the unknown scatterers with a much
higher accuracy than the BP method employed in the previous
works. Based on the good results from NMM containing the
ELM, the following CNN with a simple architecture in the
IEM also can be trained at a low cost and is able to improve
further the inversion results from the NMM.

The numerically simulated data and the experimental data
measured in the laboratory are employed to test the proposed
scheme. It is found that the performance of the NMM-IEM
is independent of the electrical sizes and contrasts, which is
quite different from the conventional methods, e.g., VBIM.
The antinoise ability tests show that the model misfit of the
reconstruction can be as low as 16% even when the contrast
is 7, and the measured data are contaminated by 10 dB
noise. In addition, the antinoise ability is also independent
of the electrical sizes and contrasts. The reconstruction of the
scattered field data for two disks provided by Institute Fres-
nel demonstrates the adaptability of the dual-module scheme
for high-frequency data measured in the laboratory. Finally,
by comparing the IEM with the U-Net and three cascaded
CNNs used in the previous works, we find that the training of
the CNN in the IEM has a much lower cost than the training
of U-Net and three cascaded CNNs. The key reason is that
the NMM itself can provide the preliminary images with the
relatively high accuracy, and thus, the architecture of the CNN
in the IEM is rather simple.

The future work will be focused on two aspects.

1) Reconstruct multiple parameters by the proposed dual-
module scheme. In our previous work, the simultane-
ous reconstruction of the 18 model parameters of the
arbitrary anisotropic scatterers has been accomplished
by using the conventional iterative method VBIM [39].
Therefore, in the future work, we will first apply the
NMM-IEM to the scatterers with both permittivity and
conductivity and then to the anisotropic scatterers.

2) Explore the inversion performance of the dual-module
scheme. A heuristic work has been accomplished in [40]
for the CNN. However, the ELM lacks the iterative
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training process. However, its stability of the output
against the input perturbation can be further studied,
which is important when the input data are contaminated
by noise.
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